A gap theorem for Ricci-flat 4-manifolds
نویسندگان
چکیده
منابع مشابه
Ricci-Flat Anti-Self-Dual Asymptotically Locally Euclidean 4-Manifolds
of the Dissertation Ricci-Flat Anti-Self-Dual Asymptotically Locally Euclidean 4-Manifolds by Evan Patrick Wright Doctor of Philosophy in Mathematics Stony Brook University 2013 A classification result for Ricci-flat anti-self-dual asymptotically locally Euclidean 4-manifolds is obtained: they are either hyperkähler (one of the gravitational instantons classified by Kronheimer), or a cyclic quo...
متن کاملConformally Flat Manifolds with Nonnegative Ricci Curvature
We show that complete conformally flat manifolds of dimension n > 3 with nonnegative Ricci curvature enjoy nice rigidity properties: they are either flat, or locally isometric to a product of a sphere and a line, or are globally conformally equivalent to R n or a spherical spaceform Sn/Γ. This extends previous results due to Q.-M. Cheng and B.-L. Chen and X.-P. Zhu. In this note, we study compl...
متن کاملA Rigidity Theorem for Affine Kähler-Ricci Flat Graph
where (U ) is the cofactor matrix of the Hessian matrix Df of a smooth convex function f defined in a convex domain Ω ⊂ R. The PDE (1.2) is the equation for affine maximal hypersurfaces. Obviously, every solution of (1.1) is a solution of (1.2). About complete affine maximal hypersurfaces there are two famous conjectures, one is the Chern’s conjecture (see [Ch]); another is a problem raised by ...
متن کاملThe Calabi Construction for Compact Ricci Flat Riemannian Manifolds
1. The main result and some consequences. In 1956 E. Calabi [6] attacked the classification problem of compact euclidean space forms by means of a special construction, called the Calabi construction (see Wolf [14, p. 124]). Here we announce that the construction can be extended to compact riemannian manifolds whose Ricci curvature tensor is zero (Ricci flat). Of course, it is not known if ther...
متن کاملA Convex Decomposition Theorem for 4-Manifolds
An exact manifold with pseudoconvex boundary (PC manifold, for short) is a compact complex manifold X, which admits a strictly pluri-subharmonic Morse function ψ, such that the set of maximum points of ψ coincides with the boundary ∂X. We prefer the term PC manifold, since the combination of words “compact Stein manifold” is likely to precipitate heart palpitations in some mathematicians. Such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Differential Geometry and its Applications
سال: 2015
ISSN: 0926-2245
DOI: 10.1016/j.difgeo.2015.02.012